Comparing Soil Carbon of Short Rotation Poplar Plantations with Agricultural Crops and Woodlots in North Central United States
We collected soil samples from 27 study sites across North Central United States to compare the soil carbon of short rotation poplar plantations to adjacent agricultural crops and woodlots. Soil organic carbon (SOC) ranged from 20 to more than 160 Mg/ha across the sampled sites. Lowest SOC levels were found in uplands and highest levels in riparian soils. We attributed differences in bulk density and SOC among cover types to the inclusion of woodlot soils in the analysis. Paired comparison found few differences between poplar and agricultural crops. Sites with significant comparisons varied in magnitude and direction. Relatively greater SOC was often observed in poplar when native soil carbon was low, but there were important exceptions. Woodlots consistently contained greater SOC than the other crops, especially at depth. We observed little difference between paired poplar and switchgrass, both promising bioenergy crops. There was no evidence of changes in poplar SOC relative to adjacent agricultural soils when considered for stand ages up to 12 years. Highly variable native SOC levels and subtle changes over time make verification of soil carbon sequestration among land cover types difficult. In addition to soil carbon storage potential, it is therefore important to consider opportunities offered by long-term sequestration of carbon in solid wood products and carbon-offset through production of bioenergy crops. Furthermore, short rotation poplars and switchgrass offer additional carbon sequestration and other environmental benefits such as soil erosion control, runoff abatement, and wildlife habitat improvement. 2004
This article is in PDF format (file size: 305 kb).
To download this article, right click on the link immediately below
and choose "save target as". To view the article, left click the link
immediately below.
(Download the latest
Acrobat Reader if required.)
Comparing Soil Carbon of Short Rotation Poplar Plantations with Agricultural Crops and Woodlots in North Central United States (2004)
We collected soil samples from 27 study sites across North Central United States to compare the soil carbon of short rotation poplar plantations to adjacent agricultural crops and woodlots. Soil organic carbon (SOC) ranged from 20 to more than 160 Mg/ha across the sampled sites. Lowest SOC levels were found in uplands and highest levels in riparian soils. We attributed differences in bulk density and SOC among cover types to the inclusion of woodlot soils in the analysis. Paired comparison found few differences between poplar and agricultural crops. Sites with significant comparisons varied in magnitude and direction. Relatively greater SOC was often observed in poplar when native soil carbon was low, but there were important exceptions. Woodlots consistently contained greater SOC than the other crops, especially at depth. We observed little difference between paired poplar and switchgrass, both promising bioenergy crops. There was no evidence of changes in poplar SOC relative to adjacent agricultural soils when considered for stand ages up to 12 years. Highly variable native SOC levels and subtle changes over time make verification of soil carbon sequestration among land cover types difficult. In addition to soil carbon storage potential, it is therefore important to consider opportunities offered by long-term sequestration of carbon in solid wood products and carbon-offset through production of bioenergy crops. Furthermore, short rotation poplars and switchgrass offer additional carbon sequestration and other environmental benefits such as soil erosion control, runoff abatement, and wildlife habitat improvement.
Author: Coleman, Mark D.; Isebrands, J.G.; Tolsted, David N.; Tolbert, Virginia R.
Source: Environmental Management Vol. 33, Supplement 1, pp. S299–S308
Citation: Coleman, Mark D.; Isebrands, J.G.; Tolsted, David N.; Tolbert, Virginia R. 2004. Comparing Soil Carbon of Short Rotation Poplar Plantations with Agricultural Crops and Woodlots in North Central United States Environmental Management Vol. 33, Supplement 1, pp. S299–S308.